
MESSAGE MINDER

Windows 3.x is all the rage these days, and it seems
that plain old DOS has become passe, right? Well, there has
never been a more inaccurate statement. I use DOS
exclusively, as does most everyone else I know. The latest
Windows craze also makes it difficult for new programmers to
"catch up" to top notch programmers because all the journals
are singing the praises of Windows, with little attention
paid to programming in DOS. I am a college student speaking
from experience here. I found it necessary to go through
magazines five years old to catch up to what people are
talking about in the various programming journals published
today!
The most difficult topic of DOS programming was also the
most difficult thing for me to find information on: Terminate
and Stay Resident programs, or TSRs. Another area which many
programmers find daunting is dealing with the PC's serial
port. Well, here is a program I wrote which deals with BOTH
concepts. If TSR programming is old hat to you, perhaps you
might find the code which uses the serial port of interest.
THE PROGRAM: What does it do?
When I decided to undertake the creation of a TSR
utility, I didn't want another "me too" note pad or it's
ilk; I wanted to create something I hadn't seen before. My
program, simply called "message", will allow messages to be
exchanged between two computers connected by their serial
ports with a null modem cable. If "message" is loaded on both
machines, a two-way conversation can take place. No longer
would it be necessary to walk from your office to a friend's
to remind her of a lunch date, or to ask for quick advice.
Once "message" is loaded it records the message strings
from the sending computer and displays them in a window at
the upper left corner of the screen when the entire message
is received. It will then pause until the user presses a
key. To send a message the user would press the hot-key
<ctrl> w, resulting in a window being displayed at the top of
the screen. Type in your message here, followed by return.
If you would prefer to load "message" on only one
machine, messages could (optionally) be sent by the quick and
dirty program I wrote called "send". It's use could not be
simpler:

C:\send Well, do you think Clinton will win?
Send works by taking each command line argument (the words of
your message) and copying them into a single string. The
string is then sent out the serial port, one character at a
time.

To un-install the program the user would enter the
following:
C:\message u

THE SERIAL PORT: It isn't really THAT bad!
OK! Before delving into how to make a TSR I feel
compelled by guilt to talk a little about the serial port.
PLEASE NOTE that this article is about TSR programming, and
the information provided on the serial port is intended to
give you an idea of how that portion of the program
functions.
Two things in the program listing that you should be
looking at are 1) the serial() function in "Message", and
2) the "Send" program.
If you don't really care how the serial port works you
still need to know how to connect two machines together for
"Message" to work. You can let someone rip you off by paying
far too much for a null modem connector, or you can be frugal
and make something yourself. Here is how:
Serial ports come in two flavors: 9 pin connectors and
25 pin connectors. Both serve the same function, the 9 pin
just eliminates the unnecessary connections. In order for
"Message" to work you will only need to run two wires between
the two machines. The other wires are there to communicate
with your modem so "Message" does not need them.
On a 25 pin connector pin 2 is used to transmit data,
and pin 3 is used to receive data; on a 9 pin connector pin 2
is used to receive data and pin 3 is used to transmit data.
Two connect two PCs with the same type of serial connector
together, run a wire from pin 2 of each machine to pin 3 of
the other machine. I also recommend that you connect the
ground pins (pin 7 on a 25 pin connector) of each PC
together. "Message" will usually work without connecting the
ground pins, but it is a good (and safe) practice to connect
them.
Connectivity aside, how does one send and receive
characters with the serial port? One possible method is the
use of the BIOS, but it is far too slow. For any real speed
we must directly use the PCs UART. UART stands for Universal
Asynchronous Receiver-Transmitter.
The UART is a chip inside of your computer, generally
the 8250. You talk to this chip via port addresses. A port
address is similar to a memory location except it is
connected to some external hardware. The base port address
of the PCs first serial card (COM 1) is usually 3F8 hex.
Like your microprocessor, the 8250 has internal registers.
You access these registers by their port address. 3F8 is
called the base address because it is the location of the
first register. The second register would be located at port

3F9, etc...
THE WORKINGS OF A TSR PROGRAM.
The first thing "message" does when it is loaded is to
determine how much memory it occupies. This information will
be saved so that when the program terminates it can tell DOS
how much memory to reserve for it.
Before we undertake the task of determining the size of
the program a word or two should be said about the PSP, or
Program Segment Prefix. When DOS loads a program into memory
it creates a 256 byte block of memory containing information
about that program. This block of memory always starts at
offset 0000. As assembly language programmers know, code
usually starts after the PSP at offset 100h, 256 decimal.
In Microsoft C there exists a global variable _psp which
contains the segment address of the PSP of the current
program. With this information we now know where in memory
"message" begins. "Message" takes advantage of this right
away by setting the huge pointer tsrbottom to point to
_psp:0000. This address is where our program starts. A huge
pointer is used so that C will do our pointer arithmetic for
us.
Programs created with Microsoft C in the small memory
model are followed in memory by their stack space, then the
heap space used for run-time memory allocation. NOTE -
Borland swaps the heap and the stack area! With Microsoft C
the address pointed to by SP:SS plus a maximum heap size is
an effective estimate for the end of the program; For
Borland the end of your program is simply SP:SS. To obtain
this information you must have access to register values.
"Message" accomplishes this by using the Microsoft _asm
keyword. The following lines , taken from "Message", will
copy the stack address into the huge character pointer
tsrstack:

137 _asm mov WORD PTR tsrstack[0], sp // save stack ptr
138 _asm mov WORD PTR tsrstack[2], ss // and stack seg
Then establish a far pointer to our PSP.
139 FP_SEG(tsrbottom) = _psp;// save PSP segment
140 FP_OFF(tsrbottom) = 0; // offset of 0

To obtain the program size in bytes simply subtract the
PSP address from the stack address, and add to this byte
value to maximum amount of memory you will allocate with
malloc(). DOS expects this value in paragraphs, not bytes.
This makes it necessary to divide our byte size by 16. This
can easily be accomplished by shifting the byte value 4 bits
to the right (2 ^ 4 = 16).
Here is how "Message" does it:

141 tsrsize = ((tsrstack - tsrbottom) >> 4) + 1;
Another useful consequence of saving our stack address
is that when our TSR is activated we can use our own stack,
rather than using the stack of the interrupted process. This
is beneficial because we have no way of knowing how much
stack space is left in the process we are interrupting. The
doit() function shows how setting up the stack can be
accomplished.
Whew! The next procedure "Message" undertakes is the
initialization of the necessary interrupts which the TSR will
use. Before we discuss the specifics of what "message" must
do with interrupts we should talk about interrupts in
general.

INTERRUPTS
In every DOS machine there exits a reserved area of
memory called the interrupt vector table. This table is 1024
bytes in size and starts at memory address 0000:0000.
This table contains 256 4 byte far pointers, that is to say
32 bit pointers which may point to any memory location DOS
has access to. These pointers are actually addresses of
functions. Some of these you are probably familiar with, such
as the VIDEO interrupt 10 hex.
Interrupt 10h is known as a software interrupt, meaning
you call it yourself in your program. There is another type
of interrupt which you may not be familiar with known as a
hardware interrupt. One example of a hardware interrupt would
be interrupt 8, which is called 18.2 times per second to
update the system time. You may be wondering how interrupt 8
is called. You, the programmer, did not call it. Hardware
interrupts are called by some external event, independent of
your program. These external interrupts are controlled by
the 8259 Programmable Interrupt Controller chip inside your
PC. Another hardware interrupt which we are concerned with is
interrupt 0Ch, which is assigned to COM port 1. We configure
the computer to call this interrupt whenever it receives a
character thru COM 1.
All you need to know about hardware interrupts for now
is that the 8259 chip must be acknowledged, or the computer
will crash. This is accomplished by sending the value of 20h
to port address 20h. See the serial() function in the program
listing for a demonstration of this.
By using DOS functions programmers may set interrupt
vectors to point to functions of their own creation.
Microsoft C has a key word interrupt which should be used in
the declaration of any function which shall be called by the
interrupt process.
Here is an example prototype:

void interrupt _far my_function(void);

The interrupts which we are concerned with are:
09h - This interrupt is called any time a key is

pressed. The scan code of the key is available
at port 60h. See the keybd() function in listing.
1Ch - The timer tick interrupt. This is called 20

times per second by hardware interrupt 9. See the
clock() function in the program listing for an
example.
28h - The DosOk interrupt. DOS calls this interrupt
when it is idle waiting for keyboard input.
0Ch - This interrupt is dedicated to COM 1. We

configure the computer's UART to call this
interrupt whenever a character is received.

The Microsoft C functions pertinent here are:
_disable()- disables maskable interrupts
_enable() - re-enables interrupts
_dos_getvect() - uses DOS function to get int vector

_dos_setvect() - uses DOS function to set int vector
More on these functions later.

POINTERS TO FUNCTIONS
Another important aspect of the C language which must be
understood is the pointer to a function. When we set an
interrupt vector to point to our own function, it is
imperative that we chain the interrupt. To chain an interrupt
the following must occur:
1) We should save the original interrupt vector in

a pointer to a function.
2) When our function is called (our function is

referred to as an Interrupt Service Routine), it
must call the original interrupt function.
3) When the original interrupt function is done, we

can then perform our intended action.
Here is an example prototype of a pointer to an interrupt
function:

void (interrupt _far *)intfunc (void);

Getting and setting of vectors is easily accomplished
thru the use of the _dos_getvect() and _dos_setvect()
functions, as shown in the program listing. It should be
noted that functions with the prefix _dos are merely
interrupt 21h calls packaged in a C function. The _disable
()
function is used to temporarily disable interrupts while
setting them so that the interrupt is not called while you
are in the process of changing it. Interrupts are then
allowed again with the _enable() function.
The init() function is responsible for getting the
address of the InDos flag. This flag is a non-zero value
whenever a DOS service is being performed. This is important
to know because DOS is not re-entrant. DOS is a single
tasking operating system; it can only process one service at
time. If a DOS function were to be called from inside your
TSR while DOS was already busy the computer would crash. DOS
in no way attempts to keep track of your TSR, but the InDos
flag is used by DOS itself to determine whether or not DOS is
busy. Our program can use the InDos flag to it's advantage
by chaining into the system timer and checking the InDos flag
18.2 times per second, executing the required operation if
and when DOS is not busy.
A problem with relying entirely on the InDos flag is
that if DOS is not doing anything important, such as waiting
for a keystroke, the InDos flag indicates that DOS is busy.
The creators of DOS have provided a solution to this problem:
When DOS is idle waiting for keyboard input it repeatedly
calls interrupt 28h. This is normally a do-nothing routine,
but we can replace this with one of our own.
Since DOS is off-limits to a TSR program our old friends
such as printf() can no longer be used. This is no great
problem. The video bios can still be used for character
output as well as keyboard input. "Message" does not use the
bios for text display, instead it places characters on the
screen by copying the characters directly into video memory.
This is known as a direct screen write.
Direct screen writes are done by establishing a far
pointer to video memory, which starts at segment B800h on
color graphics adapters, B000h for monochrome adapters. The
video memory in PCs is configured such that each character in
memory is followed by that character's attribute. In order to
calculate where in memory a character would be for a
particular row and column the following formula could be
used:
B800:0000

video address = base address + (row * 160) + (column * 2)
Where each row occupies 160 bytes in memory, 80 bytes
for the characters themselves, and 80 more for the
attributes. The column number is multiplied by two to
account for the memory required to store the attribute of

each column up to and including the specified column in a
row.

IDENTIFICATION and UN-INSTALLATION
1) IDENTIFICATION:
OK, here is the tough part! All TSR programs should
provide some method of determining whether our not a copy of
itself is currently resident, as well as a way to return the
memory it occupies to DOS. There are a few options
available to the programmer as to how to perform these
functions. The easiest method is to use an interrupt which
is normally unused by anything else, such as interrupt 60h.
Interrupt 60's vector is set to 0000 when the machine is
booted, a fact which the TSR could take advantage of. When
the program instates itself, it would set int 60's vector to
point to it's un-install procedure. By setting the vector to
this non-zero value we have a method of seeing if the program
is resident. When you wish to un-install the TSR, simply
call interrupt 60. It should be noted that this is a rather
quick and dirty way of checking to see if the program is
resident; if another TSR uses interrupt 60 conflicts will
occur. For our purposes interrupt 60 is not safe enough.
Another way to determine whether or not the TSR is
resident is to search through memory for the program's
signature. There are two ways for the programmer to do this:
1) Check EVERY segment of DOS memory to see if it is your

TSR program.
2) Go through the DOS Memory Control Block chain to search
for your program.
"Message" uses the first method for two reasons. First,
it is less complicated, and second going through the MCB
chain is a "frowned" upon process because it uses an
undocumented DOS function call that we can avoid using. If
you are interested in how to go through the MCB chain
investigate function 52h of DOS interrupt 21h.
Now to explain what "Message" is doing. You will
probably want to refer to the check_install() function if the
following is to make any sense. In our program we create a
structure containing a pointer to the character string
"_MESSAGE", and a pointer to the un-install function. The
check_install() function then calculates how many bytes from
the start of the program this structure is. This next line
is where all the "magic" happens, where "resident" is the
structure and "tsrbottom" contains our PSP address:

719 /* find offset for tsrinfo structure */
720 string_check = (struct tsrinfo _based(seg) *)
721((char _huge *)resident - tsrbottom);

The variable string_check is equal to the number of bytes the
signature structure is from the start of the program (_psp).

The most important piece of information to get out of
the above example is the use of typecasting. The incorrect
offset would be stored in string_check without specifically
telling the compiler HOW we want it to subtract tsrbottom
from resident. What do I mean by this? Well, you will recall
that the 80x86 family has segment and an offset registers
which when added together give the actual memory address.
However, the segment and the offset are not added in a
logical manner. For example, supposed you had a segment
address of 54BE hex and an offset address of 2E3A. You would
calculate the actual memory address by adding them in this
way:

SEGMENT: 54BE0 **** Notice the "magic zero"
OFFSET : + 2E3A

ADDRESS: 57A1A
By typecasting, we are simply telling the compiler that
we want segment:offset subtraction of the given values, as
opposed to integer subtraction.
Once this offset is calculated the program checks every
segment in memory to see if it is a PSP by seeing if the
memory location contains 20CD hex. Why search for 20CD?
Well, the first item in every PSP is an Interrupt 20, which
is numerically represented as 20CD hexadecimal.
If a PSP is found, the calculated offset is checked to
see if it contains the character string associated with the
TSR.

2) UN-INSTALLATION:
If the user called check_install() passing it a value of
1 the un-install function will be called, provided the
program is resident. Please note the un-install function is
delimited with the interrupt keyword. This is necessary
because the function being called is not a part of the
current program, it is in the resident version of "Message".
If un-install is called, it restores the original
interrupt vectors and restores the memory the program
occupies by using the _dos_freemem() function. This C
function calls a DOS function which frees the memory at the
segment address we send it. You will notice that the value we
pass to _dos_freemem() is _psp. This segment is the start of
our program, and this is the address we must tell DOS to
free. You must also release the memory allocated to hold the
TSR's environment space. The segment address of the
environment is stored in the PSP at offset 002Ch. We pass
this segment information to DOS by creating a far pointer to
the PSP table, and sending DOS the segment pointed to in the

table, as shown below:

844 pspvariable = _psp; // segment of environ PSP segment
845 environ = (int _based(pspvariable) *)0x2C; //envir. ptr.
846 _dos_freemem(*environ);// free environment memory
847 _dos_freemem(_psp); // free program memory

ROLLING YOUR OWN
Before you go off and start writing the next Side Kick
(tm, of course) there are a few more items to cover. It is
likely that whatever type of program you write you will want
to have pop-up menus. This will require you to perform run
time memory allocation to save the portion of the user's
screen that your window will overwrite. I have not allocated
memory in "Message" because it was not necessary. Since the
program always saves the first three lines on the screen
(requiring only a small amount of memory) it was easier to
simply declare an array of the proper size. In order to use
the malloc() function from within your TSR it is necessary to
add the maximum amount of memory your program will allocate
to the amount of memory you calculate your program occupies,
and then reserve this total amount with the _dos_keep()
function.
You will probably want your TSR to be activated by some
sort of "hotkey". This will require you to chain into one of
the keyboard interrupts. Interrupt 9 or 16h should be
suitable to this purpose. Interrupt 9 is what "Message" uses,
so that I what I will describe.
Every time a key is pressed an interrupt 9 is generated.
The scan code for this key is located at port 60h. Please
note that this code is not ASCII. If you do not have a
reference book with a list of key scan codes Quick C help
contains a list of them. Also note that each key has only one
scan code associated with it, that is to say that z and Z
would generate the same scan code. You will no doubt want
your TSR to respond to some combination of keys, such as the
(<ctrl> w) combo "Message" uses. To do this you must check
the keyboard status flag, located at memory location
0040:0017 hex. Bit three of this flag will be high if the
<ctrl> key is down. Here is the code where "Message" checks
for (<ctrl> w).

387 if(// hotkey pressed?
388((ch = inp(0x60)) == 0x11) && // w key?
389!tsr_running && // TSR not active?
390(*keyboard_status & 4) // <ctrl> key?

391)

If your program will perform file i/o with the standard
C library functions it will be necessary for your program to
tell DOS to use the TSR's PSP instead of the interrupted
applications. If you are interested in this you should
investigate functions 50h and 51h of DOS interrupt 21h.

CONCLUSION
I hope that I have in some way furthered your knowledge
of TSR programming. I hope I have not omitted some piece of
information you were keeping an eye out for, but I have
covered enough to get you started.

