VESSAGE M NDER

Wndows 3.x is all the rage these days, and it seens

that plain old DOS has becone passe, right? Wll, there has
never been a nore inaccurate statenent. | use DOS

excl usively, as does nobst everyone else | know. The |atest

W ndows craze also nmakes it difficult for new programmers to
"“catch up"” to top notch programrers because all the journals
are singing the praises of Wndows, with little attention
paid to programmng in DOS. | ama coll ege student speaking
from experience here. | found it necessary to go through
magazi nes five years old to catch up to what people are

tal king about in the various programm ng journals published

t oday!

The nost difficult topic of DOS programm ng was al so the

nmost difficult thing for me to find information on: Term nate
and Stay Resident prograns, or TSRs. Another area which many
programmers find daunting is dealing with the PC s serial
port. Well, here is a program| wote which deals with BOTH
concepts. If TSR programming is old hat to you, perhaps you
m ght find the code which uses the serial port of interest.

THE PROGRAM What does it do?

VWhen | decided to undertake the creation of a TSR

utility, I didn't want another "nme too" note pad or it's
ilk; I wanted to create sonmething | hadn't seen before. M
program sinply called "nmessage”, will allow nmessages to be

exchanged between two conputers connected by their serial
ports with a null nodemcable. If "nmessage"” is | oaded on both
machi nes, a two-way conversation can take place. No |onger
woul d it be necessary to walk fromyour office to a friend' s
to remind her of a lunch date, or to ask for quick advice.
Once "nessage” is loaded it records the nessage strings
fromthe sending conputer and displays themin a w ndow at

t he upper left corner of the screen when the entire nessage
is received. It will then pause until the user presses a
key. To send a nessage the user woul d press the hot-key
<ctrl>w, resulting in a wi ndow being displayed at the top of
the screen. Type in your nessage here, followed by return.

| f you would prefer to | oad "nmessage” on only one

machi ne, nessages could (optionally) be sent by the quick and
dirty program| wote called "send". 1t's use could not be

si npl er:
C \send Wll, do you think Cinton will wn?

Send works by taking each command |ine argunent (the words of
your message) and copying theminto a single string. The
string is then sent out the serial port, one character at a
time.

To un-install the programthe user would enter the
fol | ow ng:

C. \nessage u

THE SERIAL PORT: It isn"t really THAT bad!

OK! Before delving into howto make a TSR 1 fee

conpelled by guilt to talk a little about the serial port.
PLEASE NOTE that this article is about TSR programm ng, and
the information provided on the serial port is intended to
give you an idea of how that portion of the program
functions.

Two things in the programlisting that you should be

| ooking at are 1) the serial () function in "Message", and

2) the "Send" program

If you don't really care how the serial port works you

still need to know how to connect two nachi nes together for
"Message" to work. You can |l et someone rip you off by paying
far too nmuch for a null nodem connector, or you can be fruga
and rmake sonet hing yourself. Here is how

Serial ports conme in two flavors: 9 pin connectors and

25 pin connectors. Both serve the sane function, the 9 pin
just elimnates the unnecessary connections. In order for
"Message" to work you will only need to run two wires between
the two machines. The other wires are there to comunicate
wi th your nodem so "Message" does not need them

On a 25 pin connector pin 2 is used to transmt data,

and pin 3 is used to receive data; on a 9 pin connector pin 2
is used to receive data and pin 3 is used to transmt data.
Two connect two PCs with the sanme type of serial connector
together, run a wire frompin 2 of each machine to pin 3 of

the other machine. | also reconmend that you connect the
ground pins (pin 7 on a 25 pin connector) of each PC
together. "Message” will usually work w thout connecting the

ground pins, but it is a good (and safe) practice to connect
t hem

Connectivity aside, how does one send and receive
characters with the serial port? One possible nethod is the
use of the BIGS, but it is far too slow. For any real speed
we nmust directly use the PCs UART. UART stands for Universal
Asynchronous Receiver-Transmtter.

The UART is a chip inside of your conputer, generally

the 8250. You talk to this chip via port addresses. A port
address is simlar to a nmenory | ocation except it is
connected to sone external hardware. The base port address
of the PCs first serial card (COM 1) is usually 3F8 hex.

Li ke your m croprocessor, the 8250 has internal registers.
You access these registers by their port address. 3F8 is
call ed the base address because it is the |ocation of the
first register. The second register would be | ocated at port

3F9, etc...
THE WORKINGS OF A TSR PROGRAM.

The first thing "nessage" does when it is loaded is to
determ ne how nuch nenory it occupies. This information wll
be saved so that when the programtermnates it can tell DOS
how much nenory to reserve for it.

Bef ore we undertake the task of determ ning the size of

the programa word or two should be said about the PSP, or
Program Segnent Prefix. Wen DOS | oads a programinto nenory
it creates a 256 byte block of nenory containing information
about that program This block of nenory always starts at

of fset 0000. As assenbly |anguage programrers know, code
usually starts after the PSP at offset 100h, 256 deci mal.

In Mcrosoft C there exists a global variable _psp which
contains the segnent address of the PSP of the current
program Wth this informati on we now know where in nmenory
"message” begins. "Message" takes advantage of this right
away by setting the huge pointer tsrbottomto point to

_psp: 0000. This address is where our programstarts. A huge
pointer is used so that Cwill do our pointer arithnetic for
us.

Prograns created with Mcrosoft Cin the small nenory

nodel are followed in nenory by their stack space, then the
heap space used for run-tinme nenory allocation. NOTE -

Borl and swaps the heap and the stack area! Wth Mcrosoft C
the address pointed to by SP: SS plus a nmaxi num heap size is
an effective estimate for the end of the program For

Borl and the end of your programis sinply SP:SS. To obtain
this informati on you nust have access to regi ster val ues.
"Message" acconplishes this by using the Mcrosoft _asm
keyword. The following lines , taken from "Message", wll
copy the stack address into the huge character pointer

t srstack:

137 _asm nov WORD PTR tsrstack[0], sp // save stack ptr
138 _asm nov WORD PTR tsrstack[2], ss // and stack seg

Then establish a far pointer to our PSP.

139 FP_SEE tsrbottom
140 FP_OFF(tsrbottom

_psp; /! save PSP segnent
0; /'l offset of O

To obtain the programsize in bytes sinply subtract the

PSP address fromthe stack address, and add to this byte

val ue to maxi num amount of menory you will allocate with
mal | oc(). DOS expects this value in paragraphs, not bytes.
This makes it necessary to divide our byte size by 16. This
can easily be acconplished by shifting the byte value 4 bits
tothe right (2 ~ 4 = 16).

Here is how "Message" does it:

141 tsrsize = ((tsrstack - tsrbottom >> 4) + 1
Anot her useful consequence of saving our stack address
is that when our TSR is activated we can use our own stack,
rat her than using the stack of the interrupted process. This
i s beneficial because we have no way of know ng how ruch
stack space is left in the process we are interrupting. The
doit() function shows how setting up the stack can be
acconpl i shed.

Whew! The next procedure *""Message'™ undertakes is the
initialization of the necessary interrupts which the TSR wi ||
use. Before we discuss the specifics of what "nessage" nust
do with interrupts we should tal k about interrupts in
general .

INTERRUPTS

In every DOS machine there exits a reserved area of

menory called the interrupt vector table. This table is 1024
bytes in size and starts at nmenory address 0000: 0000.

This table contains 256 4 byte far pointers, that is to say
32 bit pointers which may point to any nenory | ocation DOS
has access to. These pointers are actually addresses of
functions. Sonme of these you are probably famliar with, such
as the VIDEO i nterrupt 10 hex.

Interrupt 10h is known as a software interrupt, neaning

you call it yourself in your program There is another type
of interrupt which you nmay not be famliar with known as a
hardware interrupt. One exanple of a hardware interrupt woul d
be interrupt 8, which is called 18.2 tinmes per second to
update the systemtine. You nay be wondering how interrupt 8
is called. You, the programrer, did not call it. Hardware
interrupts are called by sone external event, independent of
your program These external interrupts are controlled by
the 8259 Programmabl e Interrupt Controller chip inside your
PC. Anot her hardware interrupt which we are concerned with is
interrupt OCh, which is assigned to COMport 1. W configure
the conputer to call this interrupt whenever it receives a
character thru COM 1.

Al'l you need to know about hardware interrupts for now

is that the 8259 chip nust be acknow edged, or the conputer
will crash. This is acconplished by sending the value of 20h
to port address 20h. See the serial () function in the program
listing for a denonstration of this.

By using DOS functions programrers nay set interrupt

vectors to point to functions of their own creation.

M crosoft C has a key word interrupt whi ch should be used in
t he declaration of any function which shall be called by the
i nterrupt process.

Here is an exanpl e prototype:

void interrupt _far ny_function(void);

The interrupts which we are concerned with are:

09h - This interrupt is called any tinme a key is
pressed. The scan code of the key is available
at port 60h. See the keybd() function in listing.

1Ch - The timer tick interrupt. This is called 20

ti mes per second by hardware interrupt 9. See the
clock() function in the programlisting for an
exanpl e.

28h - The DosCk interrupt. DOS calls this interrupt
when it is idle waiting for keyboard input.

0Ch - This interrupt is dedicated to COM 1. W
configure the conputer's UART to call this
i nterrupt whenever a character is received.

The M crosoft C functions pertinent here are:

_disable()- disables naskable interrupts

_enable() - re-enables interrupts
_dos_getvect() - uses DOS function to get int vector
_dos_setvect() - uses DOS function to set int vector

More on these functions | ater.

POINTERS TO FUNCTIONS

Anot her inportant aspect of the C |anguage whi ch nust be
understood is the pointer to a function. Wen we set an
interrupt vector to point to our own function, it is
i nperative that we chain the interrupt. To chain an interrupt
the foll owi ng must occur:
1) We should save the original interrupt vector in

a pointer to a function.
2) When our function is called (our function is

referred to as an Interrupt Service Routine), it

must call the original interrupt function.
3) When the original interrupt function is done, we

can then perform our intended action.

Here is an exanple prototype of a pointer to an interrupt
function:
void (interrupt _far *)intfunc (void);

CGetting and setting of vectors is easily acconplished

thru the use of the _dos_getvect() and _dos_setvect ()
functions, as shown in the programlisting. It should be
noted that functions with the prefix _dos are nerely
interrupt 21h calls packaged in a C function. The _disable
()

function is used to tenporarily disable interrupts while
setting themso that the interrupt is not called while you
are in the process of changing it. Interrupts are then
allowed again with the _enable() function.

The init() function is responsible for getting the
address of the InDos flag. This flag is a non-zero val ue
whenever a DOS service is being perfornmed. This is inportant
to know because DOS is not re-entrant. DOS is a single
taski ng operating system it can only process one service at
time. If a DOS function were to be called frominside your
TSR whil e DOS was al ready busy the conputer would crash. DOS
in no way attenpts to keep track of your TSR, but the |InDos
flag is used by DOS itself to determ ne whether or not DOS is
busy. Qur programcan use the InDos flag to it's advantage
by chaining into the systemtinmer and checking the InDos flag
18.2 tinmes per second, executing the required operation if
and when DOS is not busy.
A problemwith relying entirely on the InDos flag is
that if DOS is not doing anything inportant, such as waiting
for a keystroke, the InDos flag indicates that DOS i s busy.
The creators of DOS have provided a solution to this problem
Wien DOS is idle waiting for keyboard input it repeatedly
calls interrupt 28h. This is normally a do-nothing routine,
but we can replace this with one of our own.
Since DOS is off-limts to a TSR program our old friends
such as printf() can no |onger be used. This is no great
probl em The video bios can still be used for character
out put as well as keyboard input. "Message" does not use the
bios for text display, instead it places characters on the
screen by copying the characters directly into video nenory.
This is known as a direct screen write.
Direct screen wites are done by establishing a far
pointer to video nenory, which starts at segnent B800h on
col or graphi cs adapters, BOOOh for nonochrone adapters. The
video nenory in PCs is configured such that each character in
menory is followed by that character's attribute. In order to
cal cul ate where in nenory a character would be for a
particular row and colum the follow ng forrmula could be
used:
B800: 0000

vi deo address = base address + (row * 160) + (columm * 2)

Where each row occupies 160 bytes in nenory, 80 bytes

for the characters thenselves, and 80 nore for the
attributes. The colum nunber is nultiplied by two to
account for the nmenory required to store the attribute of

each colum up to and including the specified colum in a
r ow.
IDENTIFICATION and UN-INSTALLATION

1) | DENTI FI CATI ON:

K, here is the tough part! Al TSR prograns shoul d

provi de sonme met hod of determ ning whet her our not a copy of
itself is currently resident, as well as a way to return the
menory it occupies to DOCS. There are a few options
avai l able to the progranmer as to how to performthese
functions. The easiest nmethod is to use an interrupt which
is normal |y unused by anything else, such as interrupt 60h.
Interrupt 60's vector is set to 0000 when the machine is
booted, a fact which the TSR could take advantage of. Wen
the programinstates itself, it would set int 60's vector to
point to it's un-install procedure. By setting the vector to
this non-zero value we have a nethod of seeing if the program
is resident. Wen you wish to un-install the TSR, sinply
call interrupt 60. It should be noted that this is a rather
quick and dirty way of checking to see if the programis
resident; if another TSR uses interrupt 60 conflicts wll
occur. For our purposes interrupt 60 is not safe enough.

Anot her way to determ ne whether or not the TSR is

resident is to search through nenory for the progranms

signature. There are two ways for the programmer to do this:

1) Check EVERY segnment of DOS nenory to see if it is your
TSR program

2) Go through the DOS Menory Control Block chain to search

for your program

"Message" uses the first nethod for two reasons. First,

it is less conplicated, and second goi ng through the MCB

chain is a "frowned" upon process because it uses an

undocunent ed DOS function call that we can avoid using. If

you are interested in how to go through the MCB chain

i nvestigate function 52h of DOS interrupt 21h.

Now t 0 expl ain what "Message" is doing. You wll

probably want to refer to the check install () function if the
following is to make any sense. |In our programwe create a
structure containing a pointer to the character string

" MESSAGE", and a pointer to the un-install function. The
check _install () function then cal cul ates how many bytes from
the start of the programthis structure is. This next |ine
is where all the "magic" happens, where "resident” is the
structure and "tsrbottont contains our PSP address:

719 /* find offset for tsrinfo structure */
720 string_check = (struct tsrinfo _based(seg) *)
721((char _huge *)resident - tsrbottom

The variable string_check is equal to the nunber of bytes the
signature structure is fromthe start of the program (_psp).

The nost inportant piece of information to get out of

t he above exanple is the use of typecasting. The incorrect
of fset would be stored in string _check wi thout specifically
telling the conpiler HOWwe want it to subtract tsrbottom
fromresident. Wiat do | nean by this? Well, you will recal
that the 80x86 fam |y has segnment and an offset registers
whi ch when added together give the actual nenory address.
However, the segnent and the offset are not added in a

| ogi cal manner. For exanple, supposed you had a segnent
address of 54BE hex and an offset address of 2E3A. You woul d
cal cul ate the actual nenory address by adding themin this
way:

SEGVENT: 54BEO0 **** Notice the "magic zero"
OFFSET : + 2E3A
ADDRESS: 57A1A

By typecasting, we are sinply telling the conpiler that
we want segnent:offset subtraction of the given val ues, as
opposed to integer subtraction.

Once this offset is calculated the program checks every
segnent in nmenory to see if it is a PSP by seeing if the
menory | ocation contains 20CD hex. Wy search for 20CD?
Well, the first itemin every PSP is an Interrupt 20, which
is nunerically represented as 20CD hexadeci mal .

If a PSP is found, the cal culated offset is checked to

see if it contains the character string associated with the
TSR

2) UN- | NSTALLATI ON:

If the user called check install() passing it a val ue of

1 the un-install function will be called, provided the
programis resident. Please note the un-install function is
delimted with the interrupt keyword. This is necessary
because the function being called is not a part of the
current program it is in the resident version of "Message".
If un-install is called, it restores the original

interrupt vectors and restores the nmenory the program
occupies by using the _dos freemem() function. This C
function calls a DOS function which frees the nenory at the
segnent address we send it. You will notice that the val ue we
pass to _dos freemenm() is _psp. This segnent is the start of
our program and this is the address we nust tell DOS to
free. You nust also release the nenory allocated to hold the
TSR s environnment space. The segnent address of the
environnment is stored in the PSP at offset 002Ch. W pass
this segnent information to DOS by creating a far pointer to
the PSP table, and sending DOS the segnment pointed to in the

tabl e, as shown bel ow

844 pspvariable = psp; [// segnent of environ PSP segnent
845 environ = (int _based(pspvariable) *)0x2C, //envir. ptr.
846 _dos _freenen(*environ);// free environnent nenory

847 _dos_freenmen(_psp); /1l free program nmenory

RCLLI NG YOUR OWN

Before you go off and start witing the next Side Kick
(tm of course) there are a fewnore itens to cover. It is
likely that whatever type of programyou wite you will want

to have pop-up nenus. This will require you to performrun
time menory allocation to save the portion of the user's
screen that your window will overwite. | have not allocated

menory in "Message" because it was not necessary. Since the
program al ways saves the first three lines on the screen
(requiring only a small anount of nenory) it was easier to

sinply declare an array of the proper size. |In order to use
the mall oc() function fromw thin your TSRit is necessary to
add the maxi num amount of nenory your programw || allocate

to the anount of nenory you cal cul ate your program occupi es,
and then reserve this total anbunt with the _dos_keep()
function.

You will probably want your TSR to be activated by sone

sort of "hotkey". This will require you to chain into one of
t he keyboard interrupts. Interrupt 9 or 16h should be
suitable to this purpose. Interrupt 9 is what "Message" uses,
so that | what | wll describe.

Every time a key is pressed an interrupt 9 is generated.

The scan code for this key is |ocated at port 60h. Pl ease
note that this code is not ASClI. If you do not have a
reference book with a Iist of key scan codes Quick C help
contains a list of them Also note that each key has only one
scan code associated with it, that is to say that z and Z
woul d generate the same scan code. You will no doubt want
your TSR to respond to sonme conbi nati on of keys, such as the
(<ctrl> w) conbo "Message" uses. To do this you nust check
t he keyboard status flag, |ocated at nmenory | ocation

0040: 0017 hex. Bit three of this flag will be high if the
<ctrl> key is down. Here is the code where "Message" checks
for (<ctrl>w).

387 if([// hotkey pressed?

388((ch = inp(0x60)) == 0x11) && // w key?

389!'tsr _running & // TSR not active?

390(*keyboard_status & 4) Il <ctrl> key?
391

| f your programw |l performfile i/o with the standard
Clibrary functions it will be necessary for your programto
tell DOS to use the TSR s PSP instead of the interrupted
applications. If you are interested in this you should

i nvestigate functions 50h and 51h of DOS interrupt 21h.

CONCLUSI ON

| hope that | have in sone way furthered your know edge

of TSR programming. | hope | have not omtted sonme piece of
i nformati on you were keeping an eye out for, but | have
covered enough to get you started.

